Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
BMC Genomics ; 22(1): 854, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823472

RESUMO

BACKGROUND: Despite proven therapeutic effects in inflammatory conditions, the specific mechanisms of phytochemical therapies are not well understood. The transcriptome effects of Traumeel (Tr14), a multicomponent natural product, and diclofenac, a non-selective cyclooxygenase (COX) inhibitor, were compared in a mouse cutaneous wound healing model to identify both known and novel pathways for the anti-inflammatory effect of plant-derived natural products. METHODS: Skin samples from abraded mice were analyzed by single-molecule, amplification-free RNAseq transcript profiling at 7 points between 12 and 192 h after injury. Immediately after injury, the wounds were treated with either diclofenac, Tr14, or placebo control (n = 7 per group/time). RNAseq levels were compared between treatment and control at each time point using a systems biology approach. RESULTS: At early time points (12-36 h), both control and Tr14-treated wounds showed marked increase in the inducible COX2 enzyme mRNA, while diclofenac-treated wounds did not. Tr14, in contrast, modulated lipoxygenase transcripts, especially ALOX12/15, and phospholipases involved in arachidonate metabolism. Notably, Tr14 modulated a group of cell-type specific markers, including the T cell receptor, that could be explained by an overarching effect on the type of cells that were recruited into the wound tissue. CONCLUSIONS: Tr14 and diclofenac had very different effects on the COX/LOX synthetic pathway after cutaneous wounding. Tr14 allowed normal autoinduction of COX2 mRNA, but suppressed mRNA levels for key enzymes in the leukotriene synthetic pathway. Tr14 appeared to have a broad 'phytocellular' effect on the wound transcriptome by altering the balance of cell types present in the wound.


Assuntos
Inflamação , Cicatrização , Animais , Anti-Inflamatórios não Esteroides , Biomarcadores , Diclofenaco/farmacologia , Inflamação/genética , Camundongos , Cicatrização/genética
2.
BMC Med Genomics ; 13(1): 160, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115496

RESUMO

BACKGROUND: A variety of DNA-based methods have been applied to identify genetic markers of attention deficit hyperactivity disorder (ADHD), but the connection to RNA-based gene expression has not been fully exploited. METHODS: Using well defined cohorts of discordant, monozygotic twins from the Michigan State University Twin Registry, and case-controlled ADHD cases in adolescents, the present studies utilized advanced single molecule RNA sequencing to identify expressed changes in whole blood RNA in ADHD. Multiple analytical strategies were employed to narrow differentially expressed RNA targets to a small set of potential biomarkers of ADHD. RESULTS: RNA markers common to both the discordant twin study and case-controlled subjects further narrowed the putative targets, some of which had been previously associated with ADHD at the DNA level. The potential role of several differentially expressed genes, including ABCB5, RGS2, GAK, GIT1 and 3 members of the galactose metabolism pathway (GALE, GALT, GALK1) are substantiated by prior associations to ADHD and by established mechanistic connections to molecular pathways relevant to ADHD and behavioral control. CONCLUSIONS: The convergence of DNA, RNA, and metabolic data suggests these may be promising targets for diagnostics and therapeutics in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Doenças em Gêmeos/genética , Doenças em Gêmeos/patologia , Marcadores Genéticos , Análise de Sequência de RNA/métodos , Gêmeos/genética , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Biologia Computacional , Doenças em Gêmeos/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Mol Oncol ; 12(10): 1718-1734, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30098229

RESUMO

Hedgehog (HH) signaling is involved in many physiological processes, and pathway deregulation can result in a wide range of malignancies. Glioma-associated oncogene 1 (GLI1) is a transcription factor and a terminal effector of the HH cascade. Despite its crucial role in tumorigenesis, our understanding of the GLI1 cellular targets is quite limited. In this study, we identified multiple new GLI1 target genes using a combination of different genomic surveys and then subjected them to in-depth validation in human cancer cell lines. We were able to validate >90% of the new targets, which were enriched in functions involved in neurogenesis and regulation of transcription, in at least one type of follow-up experiment. Strikingly, we found that RNA editing of GLI1 can modulate effects on the targets. Furthermore, one of the top targets, FOXS1, a gene encoding a transcription factor previously implicated in nervous system development, was shown to act in a negative feedback loop limiting the cellular effects of GLI1 in medulloblastoma and rhabdomyosarcoma cells. Moreover, FOXS1 is both highly expressed and positively correlated with GLI1 in medulloblastoma samples of the Sonic HH subgroup, further arguing for the existence of FOXS1/GLI1 interplay in human tumors. Consistently, high FOXS1 expression predicts longer relapse-free survival in breast cancer. Overall, our findings open multiple new avenues in HH signaling pathway research and have potential for translational implications.


Assuntos
Redes Reguladoras de Genes , Neoplasias/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia
4.
Front Mol Biosci ; 4: 57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28879183

RESUMO

Wound healing involves an orchestrated response that engages multiple processes, such as hemostasis, cellular migration, extracellular matrix synthesis, and in particular, inflammation. Using a murine model of cutaneous wound repair, the transcriptome was mapped from 12 h to 8 days post-injury, and in response to a multicomponent, multi-target natural product, Tr14. Using single-molecule RNA sequencing (RNA-seq), there were clear temporal changes in known transcripts related to wound healing pathways, and additional novel transcripts of both coding and non-coding genes. Tr14 treatment modulated >100 transcripts related to key wound repair pathways, such as response to wounding, wound contraction, and cytokine response. The results provide the most precise and comprehensive characterization to date of the transcriptome's response to skin damage, repair, and multicomponent natural product therapy. By understanding the wound repair process, and the effects of natural products, it should be possible to intervene more effectively in diseases involving aberrant repair.

5.
Front Genet ; 7: 100, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458478

RESUMO

Transcription of genetic information from archival DNA into RNA molecule working copies is vital for proper cellular function and is highly accurate. In turn, RNAs serve structural, enzymatic, and regulatory roles, as well as being informational templates for the ribosomal translation of proteins. Following RNA synthesis, maturing of RNA molecules occurs through various RNA processing events. One component of the collection of processes involving RNA species, broadly defined as RNA metabolism, is the RNA-editing pathway and is found in all animals. Acting specifically on RNA substrates with double-stranded character, RNA editing has been shown to regulate a plethora of genomic outputs, including gene recoding, RNA splicing, biogenesis and targeting actions of microRNAs and small interfering RNAs, and global gene expression. Recent evidence suggests that RNA modifications mediated via RNA editing influence the biogenesis of circular RNAs and safeguard against aberrant innate immune responses generated to endogenous RNA sources. These novel roles have the potential to contribute new insights into molecular mechanisms underlying pathogenesis mediated by mishandling of double-stranded RNA. Here, we discuss recent advances in the field, which highlight novel roles associated with the RNA-editing process and emphasize their importance during cellular RNA metabolism. In addition, we highlight the relevance of these newly discovered roles in the context of neurological disorders and the more general concept of innate recognition of self versus non-self.

6.
Nucleic Acids Res ; 44(7): 3233-52, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27001520

RESUMO

Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs.


Assuntos
RNA Longo não Codificante/genética , Núcleo Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica , Humanos , Elementos Isolantes , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , Retroviridae/genética , Biologia de Sistemas , Sequências Repetidas Terminais , Fatores de Transcrição/metabolismo
7.
BMC Infect Dis ; 16: 29, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818704

RESUMO

BACKGROUND: Dengue virus (DENV) is the most common vector-borne viral infection worldwide with approximately 390 million cases and 25,000 reported deaths each year. MicroRNAs (miRNAs) are small non-coding RNA molecules responsible for the regulation of gene expression by repressing mRNA translation or inducing mRNA degradation. Although miRNAs possess antiviral activity against many mammalian-infecting viruses, their involvement in DENV replication is poorly understood. METHODS: Here, we explored the relationship between DENV and cellular microRNAs using bioinformatics tools. We overexpressed miRNA-133a in Vero cells to test its role in DENV replication and analyzed its expression using RT-qPCR. Furthermore, the expression of polypyrimidine tract binding protein (PTB), a protein involved in DENV replication, was analyzed by western blot. In addition, we profiled miRNA-133a expression in Vero cells challenged with DENV-2, using Taqman miRNA. RESULTS: Bioinformatic analysis revealed that the 3' untranslated region (3'UTR) of the DENV genome of all four DENV serotypes is targeted by several cellular miRNAs, including miRNA-133a. We found that overexpression of synthetic miRNA-133a suppressed DENV replication. Additionally, we observed that PTB transcription , a miRNA-133a target, is down-regulated during DENV infection. Based in our results we propose that 3'UTR of DENV down-regulates endogenous expression of miRNA-133a in Vero cells during the first hours of infection. CONCLUSIONS: miRNA-133a regulates DENV replication possibly through the modulation of a host factor such as PTB. Further investigations are needed to verify whether miRNA-133a has an anti-DENV effect in vivo.


Assuntos
Vírus da Dengue/fisiologia , MicroRNAs/biossíntese , RNA Viral/biossíntese , Animais , Linhagem Celular , Chlorocebus aethiops , Dengue/virologia , Vírus da Dengue/genética , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/biossíntese , Células Vero , Replicação Viral
8.
Immunol Res ; 64(1): 280-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26616295

RESUMO

Pattern recognition receptors (PRRs) are involved in direct recognition of viruses, promoting cellular activation and the production of pro-inflammatory cytokines. However, despite the reduced systemic immune activation described in HIV-1-exposed seronegatives (HESNs), few studies have focused on determining the relationship between PRR expression and cytokine production. We have aimed here to evaluate the expression level of PRRs and cytokines in HESNs, HIV-1 patients and healthy donors. Basal PRR expression levels in PBMCs, dendritic cells (DCs) and monocytes, and plasma cytokine levels as well as the PRR ligand-induced cytokine productions were determined by flow cytometry, qPCR and ELISA. Higher TLR2/4 expression in DCs and monocytes from HESNs was observed. Nevertheless, TLR4/8, NOD2 and RIG-I mRNA levels were lower in PBMCs from HESNs than HIV-1-infected patients. Comparable IL-1ß, IL-18 and TNF-α mRNA levels were observed among the groups examined; however, at the protein level, production of IL-1ß, IL-6 and IL-10 was significantly lower in plasma from HESNs than from HIV-1-infected patients. Our results suggest that exposure to HIV-1 without infection could be associated with reduced basal pro-inflammatory responses. Further studies are required to define the cell subsets responsible for these differences and the role of PRRs on protection against HIV-1 infection.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , Soronegatividade para HIV , HIV-1/imunologia , Leucócitos Mononucleares/imunologia , Receptores Toll-Like/metabolismo , Adulto , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Anticorpos Anti-HIV/sangue , Humanos , Imunomodulação , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores Imunológicos , Receptores Toll-Like/genética , Adulto Jovem
9.
Front Physiol ; 6: 225, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347656

RESUMO

Bioregulatory systems medicine (BrSM) is a paradigm that aims to advance current medical practices. The basic scientific and clinical tenets of this approach embrace an interconnected picture of human health, supported largely by recent advances in systems biology and genomics, and focus on the implications of multi-scale interconnectivity for improving therapeutic approaches to disease. This article introduces the formal incorporation of these scientific and clinical elements into a cohesive theoretical model of the BrSM approach. The authors review this integrated body of knowledge and discuss how the emergent conceptual model offers the medical field a new avenue for extending the armamentarium of current treatment and healthcare, with the ultimate goal of improving population health.

10.
Proc Natl Acad Sci U S A ; 112(27): 8326-31, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26111795

RESUMO

Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the mechanism through which BET protein inhibition reduces GBM growth is not completely understood. Long noncoding RNAs (lncRNAs) are important epigenetic regulators with critical roles in cancer initiation and malignant progression, but mechanistic insight into their expression and regulation by BET bromodomain inhibitors remains elusive. In this study, we used Helicos single molecule sequencing to comprehensively profile lncRNAs differentially expressed in GBM, and we identified a subset of GBM-specific lncRNAs whose expression is regulated by BET proteins. Treatment of GBM cells with the BET bromdomain inhibitor I-BET151 reduced levels of the tumor-promoting lncRNA HOX transcript antisense RNA (HOTAIR) and restored the expression of several other GBM down-regulated lncRNAs. Conversely, overexpression of HOTAIR in conjunction with I-BET151 treatment abrogates the antiproliferative activity of the BET bromodomain inhibitor. Moreover, chromatin immunoprecipitation analysis demonstrated binding of Bromodomain Containing 4 (BRD4) to the HOTAIR promoter, suggesting that BET proteins can directly regulate lncRNA expression. Our data unravel a previously unappreciated mechanism through which BET proteins control tumor growth of glioblastoma cells and suggest that modulation of lncRNA networks may, in part, mediate the antiproliferative effects of many epigenetic inhibitors currently in clinical trials for cancer and other diseases.


Assuntos
Neoplasias Encefálicas/genética , Proliferação de Células/genética , Glioblastoma/genética , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Camundongos Nus , Microscopia de Fluorescência , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , RNA Longo não Codificante/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Trends Genet ; 31(5): 239-51, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25869999

RESUMO

Advances in the depth and quality of transcriptome sequencing have revealed many new classes of long noncoding RNAs (lncRNAs). lncRNA classification has mushroomed to accommodate these new findings, even though the real dimensions and complexity of the noncoding transcriptome remain unknown. Although evidence of functionality of specific lncRNAs continues to accumulate, conflicting, confusing, and overlapping terminology has fostered ambiguity and lack of clarity in the field in general. The lack of fundamental conceptual unambiguous classification framework results in a number of challenges in the annotation and interpretation of noncoding transcriptome data. It also might undermine integration of the new genomic methods and datasets in an effort to unravel the function of lncRNA. Here, we review existing lncRNA classifications, nomenclature, and terminology. Then, we describe the conceptual guidelines that have emerged for their classification and functional annotation based on expanding and more comprehensive use of large systems biology-based datasets.


Assuntos
RNA Longo não Codificante/classificação , RNA Longo não Codificante/genética , Animais , Humanos , RNA Longo não Codificante/química
13.
Nat Commun ; 6: 5971, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25601475

RESUMO

Non-coding RNAs (ncRNAs) play major roles in proper chromatin organization and function. Senescence, a strong anti-proliferative process and a major anticancer barrier, is associated with dramatic chromatin reorganization in heterochromatin foci. Here we analyze strand-specific transcriptome changes during oncogene-induced human senescence. Strikingly, while differentially expressed RNAs are mostly repressed during senescence, ncRNAs belonging to the recently described vlincRNA (very long intergenic ncRNA) class are mainly activated. We show that VAD, a novel antisense vlincRNA strongly induced during senescence, is required for the maintenance of senescence features. VAD modulates chromatin structure in cis and activates gene expression in trans at the INK4 locus, which encodes cell cycle inhibitors important for senescence-associated cell proliferation arrest. Importantly, VAD inhibits the incorporation of the repressive histone variant H2A.Z at INK4 gene promoters in senescent cells. Our data underline the importance of vlincRNAs as sensors of cellular environment changes and as mediators of the correct transcriptional response.


Assuntos
Senescência Celular/fisiologia , RNA não Traduzido/genética , Linhagem Celular , Senescência Celular/genética , Cromatina/genética , Heterocromatina/genética , Humanos
14.
BMC Med ; 12: 97, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24924000

RESUMO

In the past decade, numerous studies have made connections between sequence variants in human genomes and predisposition to complex diseases. However, most of these variants lie outside of the charted regions of the human genome whose function we understand; that is, the sequences that encode proteins. Consequently, the general concept of a mechanism that translates these variants into predisposition to diseases has been lacking, potentially calling into question the validity of these studies. Here we make a connection between the growing class of apparently functional RNAs that do not encode proteins and whose function we do not yet understand (the so-called 'dark matter' RNAs) and the disease-associated variants. We review advances made in a different genomic mapping effort - unbiased profiling of all RNA transcribed from the human genome - and provide arguments that the disease-associated variants exert their effects via perturbation of regulatory properties of non-coding RNAs existing in mammalian cells.


Assuntos
Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , RNA não Traduzido/genética , Animais , Sequência de Bases , Variação Genética , Genótipo , Humanos , Transcrição Gênica
15.
Nat Commun ; 4: 2745, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24201902

RESUMO

Heterochromatin formation drives epigenetic mechanisms associated with silenced gene expression. Repressive heterochromatin is established through the RNA interference pathway, triggered by double-stranded RNAs (dsRNAs) that can be modified via RNA editing. However, the biological consequences of such modifications remain enigmatic. Here we show that RNA editing regulates heterochromatic gene silencing in Drosophila. We utilize the binding activity of an RNA-editing enzyme to visualize the in vivo production of a long dsRNA trigger mediated by Hoppel transposable elements. Using homologous recombination, we delete this trigger, dramatically altering heterochromatic gene silencing and chromatin architecture. Furthermore, we show that the trigger RNA is edited and that dADAR serves as a key regulator of chromatin state. Additionally, dADAR auto-editing generates a natural suppressor of gene silencing. Lastly, systemic differences in RNA editing activity generates interindividual variation in silencing state within a population. Our data reveal a global role for RNA editing in regulating gene expression.


Assuntos
Elementos de DNA Transponíveis/fisiologia , Inativação Gênica , Heterocromatina/genética , Edição de RNA/fisiologia , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ligação Proteica , Edição de RNA/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo
16.
Nat Struct Mol Biol ; 20(11): 1333-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077224

RESUMO

The accurate and thorough genome-wide detection of adenosine-to-inosine editing, a biologically indispensable process, has proven challenging. Here, we present a discovery pipeline in adult Drosophila, with 3,581 high-confidence editing sites identified with an estimated accuracy of 87%. The target genes and specific sites highlight global biological properties and functions of RNA editing, including hitherto-unknown editing in well-characterized classes of noncoding RNAs and 645 sites that cause amino acid substitutions, usually at conserved positions. The spectrum of functions that these gene targets encompass suggests that editing participates in a diverse set of cellular processes. Editing sites in Drosophila exhibit sequence-motif preferences and tend to be concentrated within a small subset of total RNAs. Finally, editing regulates expression levels of target mRNAs and strongly correlates with alternative splicing.


Assuntos
Adenosina/genética , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo , Edição de RNA , RNA/genética , RNA/metabolismo , Animais , Drosophila , Expressão Gênica , Genoma de Inseto
17.
Genome Biol ; 14(7): R73, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23876380

RESUMO

BACKGROUND: The function of the non-coding portion of the human genome remains one of the most important questions of our time. Its vast complexity is exemplified by the recent identification of an unusual and notable component of the transcriptome - very long intergenic non-coding RNAs, termed vlincRNAs. RESULTS: Here we identify 2,147 vlincRNAs covering 10 percent of our genome. We show they are present not only in cancerous cells, but also in primary cells and normal human tissues, and are controlled by canonical promoters. Furthermore, vlincRNA promoters frequently originate from within endogenous retroviral sequences. Strikingly, the number of vlincRNAs expressed from endogenous retroviral promoters strongly correlates with pluripotency or the degree of malignant transformation. These results suggest a previously unknown connection between the pluripotent state and cancer via retroviral repeat-driven expression of vlincRNAs. Finally, we show that vlincRNAs can be syntenically conserved in humans and mouse and their depletion using RNAi can cause apoptosis in cancerous cells. CONCLUSIONS: These intriguing observations suggest that vlincRNAs could create a framework that combines many existing short ESTs and lincRNAs into a landscape of very long transcripts functioning in the regulation of gene expression in the nucleus. Certain types of vlincRNAs participate at specific stages of normal development and, based on analysis of a limited set of cancerous and primary cell lines, they appear to be co-opted by cancer-associated transcriptional programs. This provides additional understanding of transcriptome regulation during the malignant state, and could lead to additional targets and options for its reversal.


Assuntos
Retrovirus Endógenos/genética , Neoplasias/genética , Células-Tronco Pluripotentes/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Animais , Linhagem Celular Transformada , Genes Reporter , Humanos , Luciferases/metabolismo , Camundongos , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Interferência de RNA , RNA Longo não Codificante/metabolismo , Sequências Repetidas Terminais/genética
18.
Methods ; 63(1): 18-24, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23563143

RESUMO

The analysis of the differential expression of genes has been the key goal of many molecular biology methods for decades and will remain with us for decades to come. It constitutes a fundamental resource at our disposal for determining the relationship between products of transcription, biology and disease. The completed genome sequencing of many common species allowed microarrays and RNA sequencing (RNAseq) to become major tools in Systems Biology. However, we estimate that at least half of all experiments ignore transcripts that change less than some subjectively chosen threshold, typically around 2-3 fold. Here we show that a majority of the informative RNAs and differentially expressed transcripts can exhibit fold changes less than 2. We use highly quantitative single-molecule sequencing of total cellular RNA derived from a time course of inflammatory response, a process critical to a large number of diseases. Furthermore, we show that enrichment of biologically-relevant functions occurs even at very low fold changes in RNA levels. In addition, we show that most of the common statistical methods can reliably detect transcripts with low fold change when as few as 3 biological replicates are sequenced using single-molecule based RNAseq. In conclusion, given the prevalence of expression profiling in current research, the loss of data in half of all expression studies results in a significant, yet needless drain on the discovery process.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/genética , Biologia de Sistemas , Sequência de Bases , Humanos , Inflamação/genética , Inflamação/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...